

ELECTROLYTE DISTURBANCES IN HOSPITALIZED PATIENTS WITH ACUTE HEART FAILURE AND THEIR IMPACT ON OUTCOME

¹*Dr. Toran Hamed Yashar, ²Dr. Mahmood Ali Abdulla

¹MBCHB Mosul University, Diploma in Internal Medicine Al-Kufa University, C.A.B.M.S in Internal Medicine Ministry of Health in Iraq.

²MBCHB Mosul University, C.A.B.M.S in Internal Medicine Ministry of Health in Iraq.

Article Received: 30 December 2025

Article Revised: 20 January 2026

Article Published: 01 February 2026

*Corresponding Author: Dr. Toran Hamed Yashar

MBCHB Mosul University, Diploma in Internal Medicine Al-Kufa University, C.A.B.M.S in Internal Medicine Ministry of Health in Iraq. DOI: <https://doi.org/10.5281/zenodo.18441126>

How to cite this Article: ¹*Dr. Toran Hamed Yashar, ²Dr. Mahmood Ali Abdulla. (2026). Electrolyte Disturbances In Hospitalized Patients With Acute Heart Failure and Their Impact on Outcome. World Journal of Advance Healthcare Research, 10(2), 164–168.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Background: Acute heart failure is a considerable burden on healthcare systems, especially in places with limited resources. It is a leading cause of hospitalization and death among adult patients worldwide. Electrolyte disturbances are common in patients hospitalized with acute heart failure, and they are caused by complicated pathophysiological factors such as neurohormonal activation, renal dysfunction, hemodilution, and the use of diuretics and other heart failure drugs. **Objectives:** Is to determine the pattern of electrolyte abnormalities among patients admitted to Tuz General Hospital with acute heart failure. **Methods:** This is a hospital-based observational study. It was conducted between the 15th of June 2024 to the end of October 2025 at the Internal Medicine Department of Tuz General Hospital, Salah Al-Din Governorate, Iraq. The study included patients aged more than or equal to 18 years with a clinical diagnosis of acute heart failure as well as the with affordability of serum electrolyte results within the first 24 hours of admission. On the other hand, patients with end-stage renal disease on dialysis or with medical conditions or medications known to cause severe electrolyte disturbances unrelated to heart failure were excluded. The questionnaire was composed from four parts. The first part for patients' demographic information. The second part for patients' comorbidities. The third part for patients' vital signs at admission. The fourth part for laboratory investigations. **Results:** The study includes 330 patients with heart failure, of them 30 patients had electrolyte disturbances and 300 patients without electrolyte disturbances. The mean age \pm standard deviation of the study participants is 74.27 ± 6.42 years. Males represent 175 (53.03%) patients and female represent 155 (46.97%) patients with Male: Female ratio was 1.12:1. Comparison between patients with electrolytes disturbances and those without electrolyte disturbances shows statistically significant difference regarding their mean age (P value <0.001), gender (P value < 0.001), the presence of hypertension (P value <0.001), diabetes mellitus (P value < 0.001), ischemic heart disease (P value = 0.012), their pulse (P value <0.001), blood pressure (P value < 0.001) and respiratory rate (P value < 0.001). **Conclusion:** The study found among heart failure patients, elderly, male patients as well as patients already have hypertension, diabetes and ischemic heart disease are more liable for electrolytes disturbance, which is a fatal complication and indicating poor outcome of patients with heart failure.

KEYWORDS: Adrenal, Crisis, Iraq, Salahiddin, Trauma.

1. INTRODUCTION

Acute heart failure (AHF) is a considerable burden on healthcare systems, especially in places with limited resources. It is a leading cause of hospitalization and death among adult patients worldwide.^[1] Heart failure

develops when structural or functional problems in the heart cause a state in which the ventricles cannot fill with or eject blood.^[2] It encompasses the majority of cardiovascular disorders, including ischemic heart disease, hypertension, valve disease, and

cardiomyopathies.^[3] It affects more than 64 million people globally, and its incidence rises with population age and post-myocardial infarction.^[4] Heart failure, even with pharmaceutical therapy and devices, leads to high morbidity. The illness is exceedingly fatal, with five-year survival rates higher than those of common tumors like breast and prostate cancer.^[5]

Acute heart failure is still a frequent cause of admission to internal medicine wards throughout Iraq. Due to delayed access to care and a lack of diagnostic and therapeutic resources, the condition frequently manifests at advanced stages.^[6]

Electrolyte disturbances are common in patients hospitalized with acute heart failure, and they are caused by complicated pathophysiological factors such as neurohormonal activation, renal dysfunction, hemodilution, and the use of diuretics and other heart failure drugs.^[7] The most prevalent electrolyte disturbance in AHF is hyponatremia, which is associated with significant disease activity and poor circulatory status. It is frequently linked to greater mortality, longer hospital stays, and higher rehospitalization rates.^[8] Potassium abnormalities, such as hypokalemia and hyperkalemia, are clinically significant due to their link to life-threatening cardiac arrhythmias and sudden cardiac death.^[9]

Tuz General Hospital has limited access to advanced biomarkers and imaging modalities; nevertheless, standard laboratory tests such as serum electrolytes are easily accessible and affordable. Despite their therapeutic significance, there is a shortage of local data on the electrolyte abnormalities in acute heart failure and their influence on patient outcomes. Thus, the aim of this study is to determine the pattern of electrolyte abnormalities among patients admitted to Tuz General Hospital with acute heart failure. In a context with limited resources, the results might assist guide basic corrective measures and enhance early risk classification.

2. PATIENTS AND METHODS

This is a hospital-based observational study. It was conducted between the 15th of June 2024 to the end of October 2025 at the Internal Medicine Department of Tuz General Hospital, Salah Al-Din Governorate, Iraq.

The study included patients aged more than or equal to 18 years with a clinical diagnosis of acute heart failure as well as the with affordability of serum electrolyte results within the first 24 hours of admission. On the other hand, patients with end-stage renal disease on dialysis or with medical conditions or medications known to cause severe electrolyte disturbances unrelated to heart failure were excluded.

The investigators conducted direct interviews with the patients or with their responsible relative to complete self-administered structured questionnaires. The questionnaire was composed from four parts. The first part for patients' demographic information; including patient age and gender. The second part for patients' comorbidities such as hypertension, diabetes mellitus and ischemic heart disease. The third part for patients' vital signs at admission. The fourth part for laboratory investigations including serum sodium, serum potassium, blood urea and serum creatinine level. Electrolyte disturbances were defined as, hyponatremia when serum sodium < 135 mmol/L and hypernatremia when serum sodium > 145 mmol/L. Hypokalemia when serum potassium < 3.5 mmol/L and Hyperkalemia: serum potassium > 5.0 mmol/L.

Statistical analysis was done by SPSS version 30.0, a statistical analysis tool for social sciences. Scale variables were reported as mean and standard deviation, median and interquartile range, and compared using parametric testing. In all statistical tests and procedures, level of significance P value was set at ≤ 0.05 considered as significant difference or association.

3. RESULTS

The study includes 330 patients with heart failure, of them 30 patients had electrolyte disturbances and 300 patients without electrolyte disturbances. The mean age \pm standard deviation of the study participants is 74.27 ± 6.42 years. Males represent 175 (53.03%) patients and female represent 155 (46.97%) patients with Male: Female ratio was 1.12:1.

Table 3.1 shows comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their demographic variables. Statistically significant difference between them regarding their mean age (P value <0.001) and gender (P value < 0.001)

Table 3.1: Comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their demographic variables (number=330).

Variable	Electrolyte disturbance = 30	No electrolyte disturbance = 300	P value
Patient age, mean \pm standard deviation	77.98 ± 6.94	71.30 ± 6.07	<0.001
Gender, number (%):			
-Male	19 (63.33%)	156 (52%)	
-Female	11 (36.67%)	144 (48%)	<0.001

Table 3.2 shows comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their comorbidities. Statistically significant difference between them regarding the

presence of hypertension (P value <0.001), diabetes mellitus (P value < 0.001) and ischemic heart disease (P value = 0.012).

Table 3.2: Comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their comorbidities (number=330).

Variable	Electrolyte disturbance = 30	No electrolyte disturbance = 300	P value
Hypertension, number (%):			
-Yes	26 (86.67%)	178 (59.33%)	<0.001
-No	4 (13.33%)	122 (40.67%)	
Diabetes, number (%):			
-Yes	19 (63.33%)	122 (40.67%)	<0.001
-No	11 (36.67%)	178 (59.33%)	
Ischemic heart disease, number (%):			
-Normal	18 (60%)	141 (47%)	0.012
-Abnormal	22 (40%)	159 (53%)	

Table 3.3 shows comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their vital signs. Statistically

significant difference between them regarding their pulse (P value <0.001), blood pressure (P value < 0.001) and respiratory rate (P value < 0.001).

Table 3.3: Comparison between patients with electrolytes disturbances and those without electrolyte disturbances regarding their vital signs (number=330).

Variable	Electrolyte disturbance = 30	No electrolyte disturbance = 300	P value
Pulse, number (%):			
-Normal	26 (86.67%)	181 (60.33%)	<0.001
-Abnormal	4 (13.33%)	119 (39.67%)	
Blood pressure, number (%):			
-Normal	21 (70%)	157 (42.33%)	<0.001
-Abnormal	9 (30%)	143 (57.67%)	
Temperature, number (%):			
-Normal	5 (16.67%)	41 (13.67%)	0.990
-Abnormal	25 (83.33%)	259 (86.33%)	
Respiratory rate, number (%):			
-Normal	20 (66.67%)	102 (34%)	<0.001
-Abnormal	10 (33.33%)	198 (66%)	

4. DISCUSSION

Hospitalized patients with acute heart failure frequently experience electrolyte imbalances, which are significant independent indicators of unfavorable clinical outcomes such as higher in-hospital mortality and 30-day readmissions.^[10] The pathophysiology of heart failure, including neurohormonal activation, and the side effects of treatment, especially diuretics and ACE inhibitors, are frequently the cause of these abnormalities.^[11]

The study found the age of patients with electrolytes disturbances was significantly older than patients with no electrolytes disturbances. This might occur due to the fact that Glomerular Filtration Rate (GFR) and distal renal tubular function are declined with age makes older adults more vulnerable to imbalances, especially hyperkalemia. Moreover, older patients have a reduced renin and aldosterone response, as well as a diminished sensitivity to the thirst mechanism, which increases their

risk of dehydration and water retention. Which is in agreement with Zhao et al study results.^[12]

Regarding patients' gender, the study found male gender were significantly had more electrolytes disturbances in comparison to female. This might be related to lower glomerular filtration rates (eGFR) observed in male HF patients. Similar findings found by Biswas et al.^[13]

The present study showed patient with electrolytes disturbances reported significantly more history of hypertension in comparison to patients with no electrolytes disturbances, which could be linked to the use of antihypertensive medications, such as diuretics (loop and thiazide) and ACE inhibitors, which can cause hyponatremia, hypokalemia, and hyperkalemia. Abdi had consistent findings.^[14] The same with diabetes, the present study found diabetic patients were significantly more likely to develop electrolyte disturbances than non-diabetic patients, which occurred due to hyperglycemic

effect on hemostasis leading to osmotic fluid shifts and diuresis, leading to the loss of sodium and potassium. Eshetu et al had parallel finding.^[15] Furthermore, another significant factor found by this study was the presence of ischemic heart disease. Which suggests a common pathogenesis pathway between ischemic heart disease and complicated heart failure. Similar to Biswas et al study findings.^[13]

With regard to vital signs, the study explored patient with electrolytes disturbances reported significantly more pulse abnormalities in comparison to patients with no electrolytes disturbances, which explained by the fact that electrolyte disturbances, such as hyponatremia and hypokalemia, are strongly associated with tachycardia and irregular heart rhythms. Comparable results obtained from Urso et al.^[15] In addition to pulse, blood pressure abnormalities also found to be significantly more prevalent in patients with electrolyte disturbances. As certain electrolyte disturbances, particularly potassium depletion, are associated with significantly lower blood pressure and an increased risk of life-threatening arrhythmias. This agrees Sato et al study results.^[16] The last significant variable found in this study was the respiratory rate, patients with electrolytes disturbances had higher frequency of respiratory disturbances. This is findings explained by mechanisms such as hypokalemia induced muscular weakness and even paralysis or by the effect of electrolytes on acid-base balance. Biswas et al had similar results.^[13]

It is crucial to consider the limitations of the current study when assessing the outcomes. First, the small sample size may make it more challenging to extrapolate the findings to other populations. Second, the study was conducted at a single hospital, which likely decreased the external validity of the results.

5. CONCLUSIONS AND RECOMMENDATIONS

The study found among heart failure patients, elderly, male patients as well as patients already have hypertension, diabetes and ischemic heart disease are more liable for electrolytes disturbance, which is a fatal complication and indicating poor outcome of patients with heart failure.

Conflict of Interest

The authors of this study report no conflicts of interest.

REFERENCES

1. Belayneh AG, Andargie GA, Seid K, Lakew G, Yirsaw AN, Tefera M, Bogale EK, Anagaw TF, Fenta ET, Endeshaw D, Adal O. Treatment outcome and associated factors of acute heart failure in East Africa, an Ethiopian perspective: A systematic review and meta-analysis. American Heart Journal Plus: Cardiology Research and Practice, Oct 9, 2025; 100637.
2. Dini FL, Pugliese NR, Ameri P, Attanasio U, Badagliacca R, Correale M, Mercurio V, Tocchetti CG, Agostoni P, Palazzuoli A, Heart Failure Study Group of the Italian Society of Cardiology. Right ventricular failure in left heart disease: from pathophysiology to clinical manifestations and prognosis. Heart Failure Reviews, Jul. 2023; 28(4): 757-66.
3. Khan MS, Shahid I, Bennis A, Rakisheva A, Metra M, Butler J. Global epidemiology of heart failure. Nature Reviews Cardiology, Oct. 2024; 21(10): 717-34.
4. Shahim B, Kapelios CJ, Savarese G, Lund LH. Global Public Health Burden of Heart Failure: An Updated Review. Card Fail Rev., Jul. 27, 2023; 9: e11.
5. Sapna F, Raveena F, Chandio M, Bai K, Sayyar M, Varrassi G, Khatri M, Kumar S, Mohamad T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus, Oct. 4, 2023; 15(10): e46486.
6. Al-Saigh AJ, Ahmed IS, Bash SS, Hussein MF, AbdElrahman M, Al-Saigh RJ. Emergency department presentation and management of patients with acute decompensated heart failure at the Baghdad Teaching Hospital.
7. Ibrahim SL, Alzubaidi ZF, Al-Maamory FA. Electrolyte disturbances in a sample of hospitalized patients from Iraq. Journal of Medicine and Life, Sep. 2022; 15(9): 1129.
8. Şorodoc V, Asaftei A, Puha G, Ceasovschih A, Lointe C, Sîrbu O, Bologa C, Haliga RE, Constantin M, Coman AE, Petriş OR, Stoica A, Şorodoc L. Management of Hyponatremia in Heart Failure: Practical Considerations. J Pers Med., Jan. 10, 2023; 13(1): 140.
9. Piner A, Spangler R. Disorders of potassium. Emergency Medicine Clinics, Nov. 1, 2023; 41(4): 711-28.
10. Arora S, Patel P, Lahewala S, Patel N, Patel NJ, Thakore K, Amin A, Tripathi B, Kumar V, Shah H, Shah M. Etiologies, trends, and predictors of 30-day readmission in patients with heart failure. The American journal of cardiology, Mar. 1, 2017; 119(5): 760-9.
11. Polónia J, Gonçalves FR. The historical evolution of knowledge of the involvement of neurohormonal systems in the pathophysiology and treatment of heart failure. Revista Portuguesa de Cardiologia (English Edition), Dec. 1, 2019; 38(12): 883-95.
12. Zhao K, Zheng Q, Zhou J, Zhang Q, Gao X, Liu Y, Li S, Shan W, Liu L, Guo N, Tian H. Associations between serum electrolyte and short-term outcomes in patients with acute decompensated heart failure. Annals of medicine, Dec. 31, 2023; 55(1): 155-67.
13. Biswas S, Qammar B, Srivastava Y, Achlaram CM, Baig MM, Umar M, Manzoor I, Tariq B, Krishnan E, Rana JS. Electrolyte Abnormalities and Clinical Outcomes in Heart Failure Patients: A Retrospective Cohort Study. medRxiv., Nov. 13, 2025: 2025-11.
14. Abdi AA, Louis N, Hirsi AM, Nur IA, Mohamud MH, Ali WR, Imtiaz NK. Patterns and factors

associated with electrolyte abnormalities among patients with heart failure in Uganda. *BMC Cardiovascular Disorders*, Nov. 5, 2024; 24(1): 618.

15. Eshetu B, Woreda A, Fentie A, Chane E, Fetene G, Wondifraw H, Shimelis M, Girma M, Hadgu R, Demeke K, Fasil A. Assessment of Electrolyte Imbalance and Associated Factors Among Adult Diabetic Patients Attending the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A Comparative Cross-Sectional Study. *Diabetes Metab Syndr Obes*, Apr. 26, 2023; 16: 1207-1220.

16. Sato R, Koziolek MJ, von Haehling S. Translating evidence into practice: Managing electrolyte imbalances and iron deficiency in heart failure. *European Journal of Internal Medicine*, Jan. 1, 2025; 131: 15-26.