

WHAT COMPONENTS OF OCCUPATIONAL HEALTH PHYSIOTHERAPY CARE ARE IMPORTANT TO CLIENTS?

Laran Chetty^{1*}, Michael Hsu²

¹Senior Physiotherapist, National Health Service, London, United Kingdom.

²Physiotherapist, National Health Service, London, United Kingdom.

Article Received: 18 December 2025

Article Revised: 08 January 2026

Article Published: 01 February 2026

*Corresponding Author: Laran Chetty

Senior Physiotherapist, National Health Service, London, United Kingdom.

DOI: <https://doi.org/10.5281/zenodo.18440509>

How to cite this Article: Laran Chetty^{1*}, Michael Hsu² (2026). What Components Of Occupational Health Physiotherapy Care Are Important To Clients?. World Journal of Advance Healthcare Research, 10(2), 50-54.
This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Background: It is critical for physiotherapists working in occupational health to understand how clients perceive their services and what they expect when presenting for care. The purpose of this project was to provide insight into the components of care that clients presenting to the occupational health physiotherapy service consider important. **Methods:** Clients were handed a questionnaire at their initial physiotherapy consultation and asked to complete and return it immediately. The demographic and work and health data was completed by the attending physiotherapist. **Results:** The aspects of care rated in order of highest to lowest in importance by clients were treatment to improve function (95.7%), prevention (95.7%), information and education (92%), treatment for pain relief (90.2%) and diagnosis (81%). **Conclusion:** Allocating funding to expand occupational health physiotherapy services is essential, given the importance that most clients placed on function and prevention, for transitioning from reactive care models toward proactive, prevention-oriented management of musculoskeletal health conditions in the workplace.

KEYWORDS: Physiotherapy, Occupational Health, Clients, Care Components.

INTRODUCTION

Working adults spend over a third of their lives in the work environment and the working atmosphere significantly contributes to their overall health.^[1] The productivity at work is directly influenced by the health status of the workforce and an unhealthy workforce is an impediment to improving workplace productivity.^[2] It is estimated that only 10-15% of employees have access to basic occupational health services leading to reduced working capabilities of employees and economic losses for the employer.^[3] Furthermore, two-thirds of occupationally determined loss of disability-adjusted life years (DALYs) could be prevented by occupational health and safety programmes.^[4] With more than 35 million working days lost each year in the UK due to occupational ill-health and injury, it has been widely acknowledged that physiotherapists can play a key role in delivering future occupational health strategies and should be part of the mainstream occupational health provision.^[5] The role physiotherapists play in assessing, diagnosing and treating patients throughout the care

pathway is central to the changes required in healthcare today.^[6] This role looks likely to increase with the ageing workforce and the well-documented musculoskeletal ill-health associated with current work demands.^[7] Research shows that investing in comprehensive occupational health physiotherapy services reduces costs and risks for both employers and employees.^[8] To better inform occupational health physiotherapy practice, an evaluation of the components of care which are important to clients is required. This can assist physiotherapists to improve and refine their service provision within occupational health by prioritising the care and rehabilitation needs of clients. Therefore the purpose of this project was to evaluate how important the different components of occupational health physiotherapy care are to clients, and which factors are associated with how important different components of this care are to individual clients.

METHODS

Data were collected over a period of 12-months at an occupational health physiotherapy clinic based within a National Health Service Foundation Trust in North London, United Kingdom. This Trust is one of the main healthcare providers within the North London borough of England. Staff members who are eligible can access the occupational health physiotherapy service for work-related or work-impacting musculoskeletal health conditions. An OPAS-G2 database was utilised to identify and select employees that attended the occupational health physiotherapy service within the data collection period. No existing questionnaire met the needs of this project, and therefore, a 5-item questionnaire was designed by the physiotherapists following a review of existing literature which guided the development of the questionnaire.^[9-10] The questionnaire was piloted prior to the implementation of the project. Clients were handed a questionnaire at their initial physiotherapy consultation and asked to complete and return it immediately. The demographic and work and health data was completed by the attending physiotherapist. The physiotherapist immediately reviewed the completed questionnaire to ensure that no data was missing. The number of clients who chose not to participate was recorded and was used in conjunction with the completed questionnaire numbers to calculate the response rate. The stated reason for not participating was not recorded. Demographic data such as age, gender, work status and musculoskeletal health condition was captured on a spreadsheet. In order to explore how important different components of occupational health physiotherapy care (i.e., diagnosis, information and education, treatment for pain relief, treatment to improve function, and prevention) were to clients, we asked the following question using a 5-point Likert scale: What components of your occupational health physiotherapy care are important to you in relation to your presenting musculoskeletal health condition? Descriptive statistics were used to summarise the demographic characteristics of clients. To evaluate how important clients considered each of the five components of care, we calculated the frequency values and percentages to assess the spread of importance ratings across the five components of care. Multivariate logistic regression was performed to examine the model to explain the components of occupational health physiotherapy care by demographic characteristics. We dichotomised responses on the 5-point Likert scale by pooling 'quite important' and 'extremely important' into 'highly important' and 'not at all important', 'little bit important' and 'moderately important' into 'not important'. Dummy variables were created (highly important=1, not important=0; male=1, female=0; at work=1, not at work=0; spinal=1, upper and lower limbs=0) and entered into multivariate logistic regression analysis to identify which of the demographic characteristics (independent variables) were predictive of the components of occupational health physiotherapy care (dependent variable). This project was classified as

a service improvement initiative and therefore ethical approval was not required.^[11]

RESULTS

Characteristics of clients

In total, 163 of the 246 approached clients completed the questionnaire, giving a response rate of 66%. The demographics characteristics of employees are shown in Table 1. The mean age of the clients was 51.9 years, and the mean years of employment were 13.2 years. More females (73.6%) presented with musculoskeletal health conditions than males (26.4%). The most common site of pain/injury was upper and lower limbs (51.5%) and the least reported site was spinal (48.5%). Of those attending the occupational health service for musculoskeletal health conditions, more were at work (94.5%) compared to being off work due to pain/injury (5.5%).

Components of care sought when presenting to the occupational health physiotherapist

The distribution of responses to the Likert scale items that rated the importance of the five components of occupational health physiotherapy care are shown in Table 2. The components of care rated in order of highest to lowest in importance by clients were treatment to improve function (95.7%), prevention (95.7%), information and education (92%), treatment for pain relief (90.2%) and diagnosis (81%).

Factors associated with components of occupational health physiotherapy care

The association between the components of occupational health physiotherapy care and client factors such as gender, work status and musculoskeletal health condition was explored.

Diagnosis

Logistic regression analysis showed that the model as a whole was not statistically significant ($X^2=1.68$, $p=.642$, $n=163.00$). Clients were more likely to consider diagnosis as important if they were male (OR 1.81, CI 0.64 to 5.12), not at work (OR 1.74, CI 0.21 to 14.55), or presented with an upper and lower limb condition (OR 1.07, CI 0.47 to 2.43).

Information and education

Logistic regression analysis showed that the model as a whole was not statistically significant ($X^2=3.56$, $p=.314$, $n=163.00$). Clients were more likely to consider information and education as important if they were female (OR 1.01, CI 0.25 to 4.03), not at work (OR 129925368.93, CI 0.00 to ∞), or presented with a spinal condition (OR 2.70, CI 0.69 to 10.61).

Treatment for pain relief

Logistic regression analysis showed that the model as a whole was not statistically significant ($X^2=1.53$, $p=.674$, $n=163.00$). Clients were more likely to consider treatment for pain relief as important if they were female (OR 2.27, CI 0.49 to 10.58), not at work (OR 1.28, CI

0.15 to 11.26), or presented with an upper and lower limb condition (OR 1.27, CI 0.42 to 3.86).

Treatment to improve function

Logistic regression analysis showed that the model as a whole was not statistically significant ($X^2=3.25$, $p=.355$, $n=163.00$). Clients were more likely to consider treatment to improve function as important if they were female (OR 4.34, CI 0.70 to 27.02), not at work (OR 37617474.91, CI 0.00 to ∞), or presented with a spinal condition (OR 1.39, CI 0.22 to 8.69).

Prevention

Logistic regression analysis showed that the model as a whole was not statistically significant ($X^2=2.56$, $p=.465$, $n=163.00$). Clients were more likely to consider prevention as important if they were male (OR 1.53, CI 0.16 to 14.27), not at work (OR 48226952.91, CI 0.00 to ∞), or presented with a spinal condition (OR 3.99, CI 0.43 to 36.59).

Table 1: Demographic characteristics.		N	%
All clients		163	100
Gender			
Female		120	73.6
Male		43	26.4
Work status			
At work		154	94.5
Not at work		9	5.5
Musculoskeletal health condition			
Spinal		79	48.5
Upper and lower limbs		84	51.5

Table 2: Distribution of responses for components of care.

Components	Not at all important	Little bit important	Moderately important	Quite important	Extremely important
Diagnosis	3	10	18	39	93
Information and education	1	1	11	42	108
Treatment for pain relief	2	5	9	37	110
Treatment to improve function	1	2	4	19	137
Prevention	1	2	4	26	130

Table 3: Model for components of care.

Diagnosis						
Variable	Coefficient B	Std. Error	z	p	Odds Ratio	95% conf. interval
Gender Male	0.59	0.53	1.12	0.261	1.81	0.64 - 5.12
Gender Female	-0.59	0.53	1.12	0.261	0.55	0.20 - 1.56
Work status At work	-0.55	1.08	0.51	0.611	0.58	0.07 - 4.83
Work status Not at work	0.55	1.08	0.51	0.611	1.74	0.21 - 14.55
Musculoskeletal Spinal	-0.07	0.42	0.16	0.871	0.93	0.41 - 2.12
Musculoskeletal Other (upper/lower limbs)	0.07	0.42	0.16	0.871	1.07	0.47 - 2.43
Information and Education						
Variable	Coefficient B	Std. Error	z	p	Odds Ratio	95% conf. interval
Gender Male	-0.01	0.71	0.01	0.993	0.99	0.25 - 3.98
Gender Female	0.01	0.71	0.01	0.993	1.01	0.25 - 4.03
Work status At work	-18.68	8095.3	0.00	0.998	0.00	0.00 to ∞
Work status Not at work	18.68	8095.3	0.00	0.998	129925368.93	0.00 to ∞
Musculoskeletal Spinal	0.99	0.70	1.43	0.154	2.70	0.69 - 10.61
Musculoskeletal Other (upper/lower limbs)	-0.99	0.70	1.43	0.154	0.37	0.09 - 1.45
Treatment of pain relief						
Variable	Coefficient B	Std. Error	z	p	Odds Ratio	95% conf. interval
Gender Male	-0.82	0.79	1.04	0.298	0.44	0.09 - 2.06

Gender Female	0.82	0.79	1.04	0.298	2.27	0.49 - 10.58
Work status At work	-0.25	1.11	0.23	0.821	0.78	0.09 - 6.83
Work status Not at work	0.25	1.11	0.23	0.821	1.28	0.15 - 11.26
Musculoskeletal Spinal	-0.24	0.57	0.42	0.672	0.79	0.26 - 2.39
Musculoskeletal Other (upper/lower limbs)	0.24	0.57	0.42	0.672	1.27	0.42 - 3.86
Treatment of improve function						
Variable	Coefficient B	Std. Error	z	p	Odds Ratio	95% conf. interval
Gender Male	-1.47	0.93	1.57	0.115	0.23	0.04 - 1.43
Gender Female	1.47	0.93	1.57	0.115	4.34	0.70 - 27.02
Work status At work	-17.44	7216.23	0.00	0.998	0.00	0.00 - ∞
Work status Not at work	17.44	7216.23	0.00	0.998	37617474.91	0.00 - ∞
Musculoskeletal Spinal	0.33	0.94	0.35	0.727	1.39	0.22 - 8.69
Musculoskeletal Other (upper/lower limbs)	-0.33	0.94	0.35	0.727	0.72	0.12 - 4.52
Prevention						
Variable	Coefficient B	Std. Error	z	p	Odds Ratio	95% conf. interval
Gender Male	0.43	1.14	0.37	0.708	1.53	0.16 - 14.27
Gender Female	-0.43	1.14	0.37	0.708	0.65	0.07 - 6.08
Work status At work	-17.69	7174.9	0.00	0.998	0.00	0.00 - ∞
Work status Not at work	7.69	7174.9	0.00	0.998	48226952.91	0.00 - ∞
Musculoskeletal Spinal	1.38	1.13	1.22	0.221	3.99	0.43 - 36.59
Musculoskeletal Other (upper/lower limbs)	-1.38	1.13	1.22	0.221	0.25	0.03 - 2.30

DISCUSSION

It is critical for physiotherapists working in occupational health to understand how clients perceive their services and what they expect when presenting for care. This project provides insight into the components of care that clients presenting to the occupational health physiotherapy service consider important. It appears that those presenting for care view physiotherapists as health professionals who can provide diagnosis, education and information, prevention strategies, treatment for pain and improve function. This project demonstrates that while clients generally value all aspects of occupational health physiotherapy care, certain aspects of care are more important to individual clients. It is important for occupational health physiotherapists to ascertain what is most important for each client presenting for care, in order to ensure alignment between the client's and physiotherapist's expectations and goals.^[12] The findings of this project suggest some general patterns that occupational health physiotherapists should be aware of. Clients that were male were more likely to rate diagnosis and prevention as important, whereas clients that were female were more likely to rate information and education, treatment for pain relief and improvement of function as important. There was no particular client characteristics associated with those at work, and this suggests that the decision of the client to be at work is not linked to specific personal health attributes, but rather to systemic, organisational, and/or non-medical factors,^[13] whereas those not at work were more likely to rate diagnosis, information and education, treatment for pain relief and improvement of function, and prevention as important. Clients presenting with a spinal condition were more likely to rate information and education, improvement of function, and prevention as important,

whereas clients presenting with an upper or lower limb condition were more likely to rate diagnosis and treatment for pain relief as important. Future projects should focus on the differences of what clients expect of occupational health physiotherapists compared with other occupational health professionals when presenting with musculoskeletal health conditions.

CONCLUSION

In conclusion, occupational health physiotherapists should be confident that the majority of clients presenting for care consider physiotherapists to be health professionals who can provide a holistic approach to their musculoskeletal health conditions. This includes diagnosis, information and education, treatment for pain relief, treatment to improve function, and prevention. Allocating funding to expand occupational health physiotherapy services is essential, given the importance that most clients placed on function and prevention, for transitioning from reactive care models toward proactive, prevention-oriented management of musculoskeletal health conditions in the workplace.

REFERENCES

1. Nilsson, K., Hydbom, A. R., & Rylander, L. Factors influencing the decision to extend working life or retire. *Scandinavian Journal of Work, Environment & Health*, 2011; 36(6): 473-480.
2. Street, T. D., Lacey, S. J., & Somoray, K. Employee stress, reduced productivity, and interest in a workplace health program: A case study from the Australian mining industry. *International Journal of Environmental Research and Public Health*, 2019; 16(1): 94.

3. Birhan, M., & Endawoke, M. Effects of occupational hazard on employee health and productivity in case of academic institutions. *Mathews Journal of Sports Medicine*, 2023; 3(2): 1-12.
4. Macpherson, R. A., Lane, T. J., Collie, A., & McLeod, C. B. Age, sex, and the changing disability burden of compensated work-related musculoskeletal disorders in Canada and Australia. *BMC Public Health*, 2019; 18, 1-11.
5. Chetty, L. Client satisfaction with virtual consultations during the COVID-19 pandemic at an occupational health physical therapy clinic. *Workplace Health and Safety*, 2022; 70(4): 220-223.
6. Chetty, L. Telephone triage assessment for musculoskeletal disorders: Part 2. *British Journal of Nursing*, 2012; 21(22): 1316-1320.
7. Chetty, L. Experiences of occupational health doctors and nurses about the role of physiotherapists in occupational health rehabilitation: A qualitative study. *Hong Kong Physiotherapy Journal*, 2020; 40(01): 1-9.
8. Chetty, L. Health-related quality of life and cost-utility analysis of employees with musculoskeletal disorders receiving vocational physiotherapy. *Workplace Health & Safety*, 2020; 68(10): 476-479.
9. Chetty, L. Perceptions of workforce managers about the role and responsibilities of physiotherapists in occupational health rehabilitation: A qualitative study. *Progress in Medical Sciences*, 2017; 1(1): 14-18.
10. Chetty, L. Calling on the client's perceptions about the contributions of physiotherapists working in occupational health services. *Journal of Patient Experience*, 2020; 7(2): 155-159.
11. Health Research Authority. *Defining Research Table*, 2017. http://www.hra-decisiontools.org.uk/research/docs/DefiningResearchTable_Oct2017-1.pdf
12. Chetty, L. Telephone triage assessment for musculoskeletal disorders: Part 1. *British Journal of Nursing*, 2020; 21(20): 1224-1227.
13. Laloo, D., Gallagher, J., Macdonald, E. & McDonnell, C. Clinical case complexity in occupational health: Contributing factors and a proposed conceptual framework model. *Journal of Occupational and Environmental Medicine*, 2021; 63(6): e352-e361.