

WORLD JOURNAL OF ADVANCE HEALTHCARE RESEARCH

Case Study

ISSN: 2457-0400 Volume: 2. Issue: 6. Page N. 52-61 Year: 2018

www.wjahr.com

MUNCIPAL SOLID WASTE SOURCE AND DISPOSAL PRACTICES IN RESIDENTIAL AREAS OF MYSORE CITY, KARNATAKA, INDIA – A CASE STUDY

Kshema R. and Dr. S. Basavarajappa*

Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore -570 006, Karnataka, India.

Received date: 14 September 2018	Revised date: 05 October 2018	Accepted date: 26 October 2018

Corresponding author: Dr. S. Basavarajappa

Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore -570 006, Karnataka, India.

ABSTRACT

Mysore is a third most populous city in Karnataka, provides shelter for diversified population with different socio-economic standards. It has rich, vibrant history and heritage, attracting good number of tourists every day. People from different parts of India and the world would like to reside in Mysore city and expecting good and clean environment around the year. To record the municipal solid waste produced from different residential houses, 18 wards were selected randomly and 144 residents (40% male and 60% female) were met personally during January to April, 2018. The municipal solid waste origin, source, production, collection, storage, isolation, transportation and disposal were collected along with the status of respondents by using pre-tested questionnaire. The bio-degradable waste from 18 vegetables, 11 fruits, seven kitchen items and 14 paper types and non-biodegradable waste from 29 plastic items, 15 metals and 14 electronic items appeared at every residential house. Quantity of municipal solid waste recorded from edible and non-edible items varied considerably. Moreover, the quantity of municipal solid waste produced from nuclear and composite families varied considerably. However, 3.8 and 17.5% respectively the nuclear and composite families didn't provide the information about municipal waste produced per day. However, the daily using few domestic commodities made with different raw materials such as plastic, iron, woolen, cotton, rubber and paper etc, were difficult to isolate separately as edible or nonedible waste which were commonly appeared as waste every day at residential houses. Overall, eight items such as three from edible items (i.e., vegetables, fruits and kitchen), five from non-edible items (i.e., plastic, paper, metal, electronic and others) which contributed 96.9% non-edible items and 3.1% edible items recorded as municipal solid waste at residential houses in Mysore. Despite the clean city status three times, Mysore is still experiencing hardships to manage municipal solid waste and it demands regular survey and solid waste analysis to be conducted to develop strategies to control waste and maintain good environment amidst clean cities.

KEYWORDS: Source of municipal solid waste, disposal, residential areas, Mysore.

INTRODUCTION

The solid waste cause pollution in air, water and soil,^[1] its management is very essential^[2-3] to maintain clean environment at human inhabited places in different parts of the world. Several researchers^[2,4-5,3,6] have studied the solid waste management at urban centers in different parts of the world including India.^[7] Have studied the solid waste in urban areas of Tanzania.^[8] Have reported the household waste in The Netherlands.^[9] Have studied the household solid waste and its management in China.^[11] Have studied the e-waste in Ghana.^[12] Has studied the characteristics and management of municipal solid waste in Nigeria.^[13] Have investigated the status,

problems and challenges of municipal solid waste management in China.^[14] Has assessed the current status of solid waste management in Gondar town of Ethiopia.

However, in India,^[2-4,6,9,15-19] have reported the solid waste management in different urban centers of India. Later,^[20] have studied the municipal solid waste and its management practices in Dhanbad-Jharia coalfield.^[21] Has reported the Delhi municipal solid waste and its management.^[22] Have studied the solid waste assessment and management in Indore city.^[23] Have evaluated the municipal solid waste management in Tripunithura municipality of Kerala.

^[24]has reported the municipal solid waste management in Mumbai.^[25] Have identified the characteristics and management of municipal solid waste in Allahabad.^[19] Have provided information on the status of municipal solid waste management in metro cities, state capitals, class I cities and class II towns in India.^[26] Have assessed the municipal solid waste management in Pondicherry.

Further, in Karnataka, [27] have studied the solid waste management in sub-urban areas of Bangalore.^[28] Have reported the electronic waste management system in Bangalore.^[29-30] Have studied the municipal solid waste management in Mysore city.^[31] Have reported the zero waste management system in Kumbarakoppal area of Mysore. All these reports suggested the general aspects of solid waste and its management at different parts of Karnataka, India and world as a whole. However, specific reports on the source, collection, isolation, storage and disposal of solid waste produced from different sectors of urban areas are lacking. Recently,^[32] have reported the solid waste source, collection, isolation, storage and disposal exclusively from food supplying centers in Mysore. Similarly,^[33] have reported the waste source, collection, isolation, storage and disposal by health care centers in Mysore. However, reports especially from households in residential areas are wanting. Hence, the present study was undertaken.

MATERIALS AND METHODS

Study area: Mysore is located at the foot hill of Chamundi hills between 11°40' to 12°40' N. latitude and 75°57' to 77°15' E. longitude with the elevation 770 meters mean sea level ^[34]. The city experiences tropical monsoon which is a product of the interplay the two opposing air masses of the south-west and the north-east monsoons. Over the greater part of the District, summer is languorously warm and winter is bracingly cool. By and large, Mysore city climate is agreeable and cool with equable temperatures due to salubrious climate. Further, it is housed with more than one million local populations^[35] and becomes third most populous city in Karnataka. The literacy rate in Mysore is higher (82.8%) than that of the State average. Moreover, Mysore has a rich, vibrant history and heritage, attracting good number of tourists every day. Thus, Mysore has provided shelter for diversified population with different socio-economic conditions. Hence, people from different parts of India and the world liking to reside in Mysore city. Hence, it is called retired persons and aged people paradise.

Methodology: To record the municipal solid waste produced from different residential houses, primary and secondary source related to the origin, source, production, collection, storage, isolation, transportation and disposal of waste was collected from various people who have different socio-economic conditions. The study area, number of study sites and status of respondents selected during the present investigation is depicted in Table 1. People were met in their households and interviewed by using pre-tested questionnaire. Information on municipal solid waste segregation and disposal was collected as per^[36]. Out of 65 wards in Mysore city, 18 wards were selected randomly and 144 residents (40% male and 60% female) were met personally during January to April, 2018 to collect the data on municipal solid waste and its disposal ^[32-33]. Collected data was complied systematically and analyzed by following standard methods as per.^[37]

RESULTS

Per cent waste produced from edible items: Commonly occurring waste from edible items is depicted in Table 2. Bio-degradable waste from 18 vegetables, 11 fruits and seven kitchen items have recorded and these entire waste items per cent occurrence is given in Table 2.

Per cent waste produced from non-edible items: Around 43 non-edible items were commonly appeared as waste. Of all, 29 and 14 type plastic and paper waste respectively appeared at every residential house. Per cent occurrence of plastic and paper waste is given in Table 3. In addition, metal, electronic and other non-specific materials also produced from non-bio-degradable waste at residential houses. Total 15 metals, 14 electronic items and their per cent occurrence is shown in Table 4.

Quantity of waste produced from nuclear and composite families: In Mysore, the nuclear family has three to four individuals and composite family has minimum five to maximum ten individuals. Amongst nuclear families, highest (33.8%) families have produced < 0.5 kilogram waste every day and it was followed by 25.9% of the houses produced 0.5 to 0.6 kilogram and one kilogram waste produced every day by the 25.9 and 24% of the nuclear families respectively (Table 5). Besides, 9.6 and 2.9% of the nuclear families respectively produced one to 3.4 and 3.5 kilogram wastes per day (Table 5). However, 3.8% of the nuclear families didn't provide information about the amount of waste produced. Similarly, amongst composite families, highest (32.5%) families have produced one to 1.9 kilogram waste every day and it was followed by 2.9 and three to 4.9 kilogram wastes every day by 20 and 17.5% of the composite families respectively (Table 5). In addition, 12.5% composite families have produced more than five kilogram of waste per day (Table 5). However, 17.5% of the composite families didn't provide the information on amount of waste produced per day (Table 5).

Quantity of waste recorded from edible items: Commonly used 18 vegetable items have contributed 477 gram waste per day and that accumulated to 174.106 kilogram waste per year at every residential house in Mysore (Table 6). Similarly, from 11 fruits, 857 gram waste per day and that accumulated to 312.805 kilogram waste per year from the residential houses. Further, from eight cooked, extra or unused food items of the kitchen has generated considerable quantity of bio-degradable waste every day in residential houses. Quantity of different cooked food items appeared from kitchen as waste is given in Table 7. Total 533 gram kitchen waste per day and that accumulated to 194.545 kilogram per year from the residential houses in Mysore (Table 7).

Quantity of waste from non-edible items: Daily using few domestic commodities made with different raw materials such as plastic, iron, woolen, cotton, rubber and paper etc, were difficult to isolate separately as nonedible waste. Such type of commodities were recorded separately as other waste and those included four plastic items, two each wooden and glass items and six cloth items, which were commonly appeared as waste every day at residential houses. Quantity of these waste items produced per day and year is depicted in Table 7. Table 8 shows the different type of plastic, paper waste and their quantity produced per day and year at residential houses.

Around 29 items from plastic and 14 items from paper were commonly recorded as waste every day at residential houses. Besides, metals and electronic waste items also recorded as waste at residential houses in Mysore (Table 9). Total 15 items from metal and 14 items from electronic materials appeared as waste and their quantity produced per day and year is shown in Table 9. Overall, eight items such as three from edible items (i.e., vegetables, fruits and kitchen), five from nonedible items (i.e., plastic, paper, metal, electronic and others) have contributed for waste generation amidst residential houses in Mysore (Table 10). Per cent occurrence of these waste items varied considerably. Thus, 96.9% non-edible items and 3.1% edible items recorded as waste at residential houses in Mysore (Table 10).

Table 1: Study sites and number of respondents considered during the survey in Mysore.

Sl. No.	Name of study area	ʻn'	% Sampling	Sl. No.	Status of Respondent	ʻn'	% Sampling
1.	Agrahara	12	8.2	1.	Businessmen	44	30.1
2.	Akshyabandar	10	6.9	2.	Carpenter	03	2.1
3.	Chamarajapuram	10	6.9	3.	Doctors	03	2.1
4.	Ettigegoodu	10	6.9	4.	Drivers	05	3.4
5.	Hebbal	07	4.7	5.	Electrician	06	4.1
6.	Kumbarakoppalu	10	6.9	6.	Engineers	03	2.1
7.	Kukaralli	04	2.7	7.	Industrialists	08	5.5
8.	Kuvempunagar	10	6.9	8.	Lawyer	05	3.4
9.	Mahadeshwara Badavane	07	4.7	9.	Lecturers	04	2.7
10.	Mandimohal	08	5.5	10.	Medical Representatives	03	2.1
11.	Nazarbadh	10	6.9	11.	Nurse	04	2.7
12.	Ontikopal	07	4.7	12.	Others	30	20.6
13.	Paduvaralli	08	5.5	13.	Photographer	01	0.7
14.	Ramakrishna Nagar	05	3.4	14.	Plumber	07	4.8
15.	Ramaswamy Circle	10	6.9	15.	Street vendor	07	4.8
16.	Saraswathipuram	05	3.4	16.	Tailor	05	3.4
17.	T. K. Layout	05	3.4	17.	Teacher (High School)	04	2.7
18.	Vijaynagar	08	5.5	18.	Teacher (Primary School)	04	2.7
Total		146	100.0	Total		146	100.0

Note: 'n' number of observations.

Table 2: Per cent waste produced from edible items in residential houses.

	Waste produced from edible items												
	Vegetable waste			Fruit waste	Kitchen waste								
Sl. No.	Items	%	Sl. No.	Items	%	Sl. No.	Items	%					
1.	Beans and carrot	7.2	1.	Apple peelings	1.2	1.	Chapattis	1.8					
2.	Beet root peelings	4.7	2.	Banana 3.9		2.	Curry	6.2					
3.	Brinjal	3.2	3.	Chikku fruits 2.8		3.	Decoction	0.4					
4.	Bitter guard	3.3	4.	Grapes waste	vaste 0.9		Egg shell	0.6					
5.	Bottle guard	2.3	5.	Lemon peelings 2.3		5.	Non - veg bones	37.5					
6.	Cabbage	5.9	6.	Musk melon 16.3		6.	Ragi ball	6.6					
7.	Capsicum	2.4	7.	Orange	3.5	7.	Rice items	37.5					
8.	Chilly	5.6	8.	Papaya peelings	18.7								
9.	Coriander root	6.2	9.	Pomegranate peelings	5.5								
10.	Curry leaves	5.9	10.	Sweet orange	4.1	0	Samhan	0.4					
11.	Garlic	3.2				0.	Sambai	9.4					
12.	Ginger	3.3	11.	Water melon peelings	40.8								
13.	Green leafy vegetables	8.8											

14.	Onion peeling	10.7				
15.	Potato peelings	5.0				
16.	Radish	3.7				
17.	Ribbed guard	7.3				
18.	Rotten tomato	11.3				
Total		100.0	Total	100.0	Total	100.0

Table 3: Per cent occurrence of plastic and paper waste from non-edible items at residential houses in Mysore.

Non-edible waste produced from											
	Plastic items			Paper items							
Sl. No.	Туре	%	Sl. No.	Туре	%						
1.	Black plastic covers	3.6	1.	Baby diapers	4.7						
2.	Broken buckets	2.8	2.	Detergent covers	12.3						
3.	Blue plastic covers	2.4	3.	Ice cream cups	4.5						
4.	Body lotion plastic bottles	2.3	4.	Journals	6.0						
5.	Coconut oil plastic bottles	3.4	5.	Magazines	5.7						
6.	Empty salt packet	8.5	6.	Match box	5.8						
7.	Empty milk packets	7.6	7.	Medicine slips	6.3						
8.	Empty oil covers	4.8	8.	Note book	2.4						
9.	Maggie covers	2.1	9.	Old calendar	8.9						
10.	Old gasket	1.0	10.	Old photos	4.1						
11.	Plastic water bottles	1.3	11.	Old text book	1.1						
12.	Shopping covers	3.4	12.	Soap cover	12.7						
13.	Tupper wears	2.0	13.	Sanitary pads	12.7						
15.	Tablet covers	2.2									
16.	Used boost bottles	2.4									
14.	Used chips cover	2.4									
17.	Used comb	1.6									
18.	Used dalda packet	3.0									
19	Used detergent covers	7.8									
20.	Used horlicks bottles	2.7									
21.	Used knife handle	3.6	14	Tooth pasta boy	12.8						
22.	Used masala packet cover	2.6	14.	room paste box	12.0						
23.	Used plastic razor	2.7									
24.	Used pens	1.7									
25.	Used shampoo covers	7.1									
26.	Used soap boxes	2.2									
27.	Used tooth brush	6.0									
28.	Used tooth brush tube	5.3									
29.	Used tonic bottles	1.5									
Total		100.0		Total	100.0						

Table 4: Per cent waste produced from non-edible items in residential houses.

				Waste produced from non-edibl	e items				
	Metal waste			E-waste		Other waste			
Sl. No.	Items	%	Sl. No.	Items	%	Sl. No.	Items	%	
1.	Aluminum can	3.1	1.	Induction stove	6.6	1.	Broken chair	4.9	
2.	Broken utensils	15.7	2.	Old camera & its accessories	0.9	2.	Broken glass wear	1.1	
3.	Christmas lights	6.3	3.	Old clock batteries	0.1	3.	Porcelain wears	1.8	
4.	Copper wire	9.4	4.	Old key board	1.3	4.	Pouch	0.3	
5.	Old batteries	2.1	5.	Old monitor	22.0	5.	Table cover	0.3	
6.	Old bulbs	1.4	6.	Old mouse	0.3	6.	Unused old bed	80.9	
7.	Old heater	22.0	7.	Old pen drives	0.2	7.	Teddy bear	1.4	
8.	Old knife	3.8	8.	Old TV's	66.1	8.	Unused bags	2.3	
9.	Rusted iron	12.6	9.	Unused calculator	0.05	9.	Unused cloths	1.1	
10.	Unused bangles	2.1	10.	Unused CD's	0.5	10.	Unused shoes/slippers	0.7	

11.	Unused hair clips	0.5	11.	Unused floppies	0.2	11.	Unused socks	0.03
12.	Unused earrings	0.2	12.	Unused ear phone	0.03	12.	Used pillow covers	0.9
13.	Used blade	0.3	13.	Unused mobile charger	1.3	13	Used pillow	3.2
14.	Used lighter	18.9	14	Unused remote	0.2	14	Wooden motorials	1 1
15.	Used razor	1.6	14.	Unused remote	0.5	14.	wooden materials	1.1
Total		100.0	Tota	1	100.0	Tota	l	100.0

Table 5: Quantity and per cent amount of waste produced in different residential houses.

	Quantity of waste produce in												
	Nuclear Family		Composite Family										
Sl. No.	Quantity per day (in Kg.)	% occurrence	Sl. No.	Quantity per day (in Kg.)	% occurrence								
1.	Below 0.5	33.8	1.	1.0 to 1.9	32.5								
2.	0.5 to 0.6	25.9	2.	2.0 to 2.9	20.0								
3.	0.7 to 0.9	24.0	3.	3.0 to 4.9	17.5								
4.	1.0 to 3.4	9.6	4.	5 and above	12.5								
5.	3.5 & above	2.9	5.	Not known	17.5								
6.	Not know	3.8	Total		100.0								
Total		100.0	Total		100.0								

Table 6: Quantity of vegetable and fruit waste produced per day in residential houses.

	Vegetable w	vaste		Fruit waste					
Sl.	Itoma	Quar	ntity per	Sl.	Itoma	Quantity per			
No.	Items	Day (g)	Year (Kg)	No.	Items	Day (g)	Year (Kg)		
1.	Beans and carrot	15.0	5.475	1.	Apple peelings	10.0	3.650		
2.	Beet root peelings	25.0	9.125	2.	Banana	33.0	12.045		
3.	Brinjal	55.0	20.075	3.	Chikku fruits	24.0	8.760		
4.	Bitter guard	45.0	16.425	4.	Grapes waste	8.0	2.920		
5.	Bottle guard	40.0	14.600	5.	Lemon peelings	20.0	7.300		
6.	Cabbage	30.0	10.950	6.	Musk melon	140.0	51.100		
7.	Capsicum	4.0	1.460	7.	Orange	30.0	10.950		
8.	Chilly	6.0	2.190	8.	Papaya peelings	160.0	58.400		
9.	Coriander root	10.0	3.650	9.	Pomegranate peelings	47.0	17.155		
10.	Curry leaves	5.0	1.825	10.	Sweet orange	35.0	12.775		
11.	Garlic	10.0	3.650						
12.	Ginger	10.0	3.650						
13.	Green leafy vegetables	55.0	20.075						
14.	Onion peeling	0.5	0.183	11	Water malen naalinga	250.0	127 750		
15.	Potato peelings	4.5	1.643	11.	water meion peenings	550.0	127.750		
16.	Radish	16.0	5.840						
17.	Ribbed guard	46.0	16.790						
18.	Rotten tomato	100.0	36.500						
Total		477.0	174.106	Total		857.0	312.805		

Table 7: Quantity of kitchen and other waste produced per day in residential houses.

	Kitcher	n waste		Other waste						
Sl.	T	Quantity per		Sl.	Itoma	Quantity per				
No.	Items	Day (g)	Year (Kg)	No.	Items	Day (g)	Year (Kg)			
1.	Chapattis	10.0	3.650	1.	Broken chair	1500.0	547.500			
2.	Curry	33.0	12.045	2.	Broken glass wear	340.0	124.100			
3.	Decoction	2.0	0.730	3.	Porcelain wears	550.0	200.750			
4.	Egg shell	3.0	1.095	4.	Pouch made with plastic	100.0	36.500			
5.	Non - veg bones	200.0	73.000	5.	Table cover made with plastic	110.0	40.150			
6.	Ragi ball	35.0	12.775	6.	Unused old bed	25000.0	9,125.00			
7.	Rice items	200.0	73.000	7.	Unused Teddy bear	440.0	160.600			
Q	Sambar	ambar 50.0		8.	Unused bags made with plastic	700.0	255.500			
0.	Sambar	50.0	16.230	9.	Unused cloths	330.0	120.45			

			10.	Unused shoes/slippers	210.0	76.650
	11. Unused		Unused socks	10.0	3.650	
-			12.	12. Used pillow covers		109.50
			13	Used pillow	1000.0	365.00
			14.	Wooden materials	330.0	120.45
Total	533.0	194.545	Tota		30,920.0	11,285.800

Table 8: Quantity of plastic and paper waste produced per day in residential houses.

	Plastic wast	e	Paper waste					
Sl.	Itoma	Quar	ntity per	Sl.	Itoma	Quar	ntity per	
No.	Items	Day (g)	Year (Kg)	No.	Items	Day (g)	Year (Kg)	
1.	Black plastic covers	2.0	0.73	1.	Baby diapers	16.0	5.840	
2.	Broken buckets	1000.0	365.0	2.	Detergent covers	4.0	1.460	
3.	Blue plastic covers	2.0	0.73	3.	Ice cream cups	9.0	3.285	
4.	Body lotion plastic bottles	16.0	5.84	4.	Journals	50.0	18.250	
5.	Coconut oil plastic bottles	15.0	5.475	5.	Magazines	69.0	25.185	
6.	Empty salt packet	3.0	1.095	6.	Match box	10.0	3.650	
7.	Empty milk packets	4.3	1.569	7.	Medicine slips	1.5	0.547	
8.	Empty oil covers	6.0	2.190	8.	Note book	189.0	68.985	
9.	Maggie covers	0.7	2.555	9.	Old calendar	56.0	20.440	
10.	Old gasket	20.0	7.30	10.	Old photos	3.0	1.095	
11.	Plastic water bottles	50.0	18.25	11.	Old text book	200.0	73.000	
12.	Shopping covers	2.0	0.73	12.	Soap cover	15.0	5.475	
13.	Tupper wears	400.0	146.0	13.	Sanitary pads	7.0	2.555	
15.	Tablet covers	2.0	0.73					
16.	Used boost bottles	25.6	9.344					
14.	Used chips cover	0.76	0.277					
17.	Used comb	12.0	4.38					
18.	Used dalda packet	12.0	4.38					
19	Used detergent covers	1.75	0.638					
20.	Used horlicks bottles	26.2	9.563					
21.	Used knife handle	100.0	36.50	14	Tooth posts how	15.0	5 175	
22.	Used masala packet cover	2.2	0.803	14.	100th paste box	15.0	5.475	
23.	Used plastic razor	6.0	2.19					
24.	Used pens	9.0	3.285					
25.	Used shampoo covers	1.2	0.438					
26.	Used soap boxes	24.0	8.76					
27.	Used tooth brush	8.0	2.92					
28.	Used tooth paste tube	25.0	9.125]				
29.	Used tonic bottles	13.0	4.745]				
Total		1789.7	653.240	Tota	1	644.50	235.242	

Table 9: Quantity of metal and e-waste produced per day in residential houses.

Metal waste				E-waste				
Sl.	Itoma	Quantity per		Sl.	Itoms	Quantity per		
No.	Items	Day (g)	Year (Kg)	No.	Items	Day (g)	Year (Kg)	
1.	Aluminum can	50.0	18.25	1.	Induction stove	1500.0	547.50	
2.	Broken utensils	250.0	91.25	2.	Old camera & its accessories	200.0	73.00	
3.	Christmas lights	100.0	36.50	3.	Old clock batteries	12.0	4.280	
4.	Copper wire	150.0	54.75	4.	Old key board	300.0	109.50	
5.	Old batteries	35.0	12.755	5.	Old monitor	5000.0	1,825.00	
6.	Old bulbs	23.0	8.395	6.	Old mouse 70.0		25.550	
7.	Old heater	350.0	127.75	7.	Old pen drives	40.0	14.600	
8.	Old knife	60.0	21.90	8.	Old TV's	15000.0	5,475.00	
9.	Rusted iron	200.0	73.00	9.	Unused calculator	12.0	4.380	
10.	Unused bangles	34.0	12.41	10.	Unused CD's 110.0		40.150	
11.	Unused hair clips	8.0	2.92	11.	Unused floppies 50.0 18		18.250	

12.	Unused earrings	3.0	1.095	12.	Unused ear phone	7.0	2.580
13.	Used blade	4.0	1.46	13.	Unused mobile charger	300.0	109.50
14.	Used lighter	300.0	109.5	14	Unused remote	80.0	29.200
15.	Used razor	25.0	9.125	14.			
Total		1,592.0	581.060	Total		22,681.0	8,278.570

Table 10: Overall waste produced in residential houses.

Residential waste produced								
		Quant	ity per	0/	Overall %			
SI. No.	Waste from	Day (g)	Year (Kg)	% occurrence				
I. Edible	items							
1.	Vegetables	477.0	174.106	25.6	0.8			
2.	Fruits	857.0	312.805	45.9	1.4			
3.	Kitchen	533.0	194.545	28.5	0.9			
Total		1,867.0	681.456	100.0	3.1			
II. Non-	edible items							
1.	Plastic	1,789.70	653.240	3.1	3.0			
2.	Paper	644.50	235.243	1.1	1.1			
3.	Metal	1,592.0	581.060	2.8	2.7			
4.	Electronic	22,681.0	8,278.570	39.4	38.1			
5.	Other	30,920.00	11,285.800	53.6	52.0			
Total		57,627.200	21,033.913	100.0	96.9			
Grand Total (I + II)		59,494.200	21,715.369	200.0	100.0			

Note: Data is based on Tables 6, 7, 8 & 9.

DISCUSSION

In India, various urban solid waste management systems are functioning around the clock for proper and safe disposal of waste produced from the residential areas ^[15]. The status of municipal solid waste management in metro cities, state capitals, class I cities and class II towns in India are encouraging [20]. The nuclear family had three to four individuals and composite family had minimum five to maximum ten individuals. Amongst nuclear families, 83.7% of the families produced solid waste in between <0.5 to one kilogram and 12.5% of the families have produced one to 3.5 kilogram solid waste per day. However, amongst composite families, the solid waste production was more. Around 32.5% of the families have produced one to 1.9 kilogram and 37.5% of the families have produced 2.9 to 4.9 kilogram solid waste every day. Around 12.5% of the composite families have produced more than five kilogram waste per day. Similarly, in Mysore, more efforts were made to have clean city status ^[32-33]. Obviously, different management processes are in use and hence it shows more perspectives^[2] for better management of municipal solid waste at urban centers. Similar types of approaches were made $by^{[23,20]}$ for metro cities, state capitals, class I cities and class II towns in India. Hence, solid waste management studies are necessitated routinely in India and it is evidenced by the published reports ^[2-6]. The domestic solid waste generation is a continuous process at metropolitan cities,^[6] its regular analysis help assess the current status and help suggest future directions for proper management ^[5,10,18,14]. From this, problems and challenges of municipal solid waste management could be realized^[13] and accordingly, alternative approaches

with specific strategies would be adopted for better management in urban centers ^[17, 23].

In Mysore, around 18 vegetables, 11 fruits and seven kitchen items have produced as bio-degradable waste. Total 43 non-edible items which included 29 plastic and 14 paper wastes along with 15 metals and 14 electronic items appeared at every residential house. Commonly used 18 vegetables, 11 fruits, and eight cooked, extra or unused food items from the kitchen room has generated good quantity of bio-degradable waste every day in residential houses. Further, from daily using domestic commodities made with plastic, iron, woolen, cotton, rubber and paper, good quantity of solid waste appeared as non-edible waste every day at residential houses. Besides, good quantity of metals and electronic waste items were appeared as non-biodegradable wastes at residential houses and put together 96.9% non-edible items and 3.1% edible items appeared as solid waste at residential houses in Mysore. Since, municipal solid waste possess specific characteristics,^[24] certain solid wastes especially metal, rubber, glass, plastic and electronic waste materials need specific disposal sites and offer more scope for recycling ^[11, 37]. Proper plans are required to recycle non-biodegradable waste on unitbased pricing and make this as a remunerative income generating activity. Such types of efforts were made in The Netherlands for cost savings in unit-based pricing of household waste disposal [8]. Similarly, waste recycling was done in Canada^[38] and The Lake Victoria Basin in Kenya ^[39]. Such types of efforts are wanting and unitbased pricing and remunerative income generating activities on municipal solid waste are to be taken up

seriously as there are good recycling potentials for municipal solid waste sustainable recycling Moreover, the bio-degradable waste could be used for composting ^[43]. However, there are many challenges appear while managing and recycling the municipal solid waste^[44] due to non-availability of information on solid waste production. In Mysore, 3.8% of the nuclear families and 17.5% of the composite families didn't provide the information on amount of waste produced per day. This type of challenges should be solved by adopting innovative techniques, alternative approaches with better strategies on eco-friendly way as suggested by^[45-48,23] for better solid waste management. Thus, integrated approach for sustainable solid waste management is need of the day for India in general^[49] and developing cities like Mysore in particular. Similar type of studies were made for urban centers by $^{[2, 6, 8, 10, 13, 14, 18, 39, 41]}$. Thus, our observations are in agreement with

^{14, 10,99, 41]}. Thus, our observations are in agreement with the earlier reports published by the previous researchers in India and other parts of the world. Present study focused on the household solid waste origin, source, production and disposal of one of the fast growing cities in India.

SUMMARY

The nuclear family has three to four individuals and composite family has minimum five to maximum ten individuals. Waste from 36 edible and 43 non-edible items obtained from nuclear and composite families amidst residential areas. However, quantity of municipal waste production among the nuclear and composite families varied considerably. Bio-degradable waste was collected from 18 vegetables, 11 fruits, 7 kitchen items and 14 paper materials. On an average 477, 857 and 533gram bio-degradable waste produced per day by every residential house in Mysore. Non-bio-degradable waste was recorded from 29 plastics, 15 metals and 14 electronic materials along with considerable quantity of rubber and glass items. Total 17.5 and 3.8% of the nuclear families and composite families shown disinterest and didn't provide information on the waste and its disposal respectively. Overall, eight from edible items (i.e., vegetables, fruits and kitchen), five from nonedible items (i.e., plastic, paper, rubber, metal, electronic and others) have contributed for municipal waste generation amidst residential houses in Mysore. Altogether, 96.9% non-edible items and 3.1% edible items have produced bio-degradable and nonbiodegradable waste at residential houses in Mysore.

RECOMMENDATIONS

Municipal waste segregation must be done at its point source in every residential house and should be properly stored in colour coded dustbins for their proper disposal. The bio-degradable and non-biodegradable waste should be placard with the bio-hazard mark while on the transit. The municipality attendants should interact with residents while collecting the waste and municipal authorities and other agencies that collect waste should update the residents periodically for safe disposal of waste regularly from their premise for land fill or other treatment.

ACKNOWLEDGEMENT

Authors are thankful to the Chairperson, DOS in Zoology, University of Mysore, Mysore for encouragement. Some part of this work is benefited from the grants of PSFS, DOS in Zoology, Manasagangotri, Mysore. Authors also thank all the residents who have helped during the present study.

REFERENCES

- 1. Trivedi PR, Raj G. Solid waste pollution. Edn. Encyclopedia of Environmental Science. Akashdeep Publishing House, New Delhi, 1992; 1-17.
- 2. Muzamdar NB. Muncipal solid waste management the Indian perspectives. Environment Monitor, 1994; 12(2):257-269.
- Jha MK, Sondhi OAK, Pansare M. Solid waste management – a case study. IJEP, 2003; 23(11): 1153-1160.
- 4. Joardar SD. Urban residential solid waste management in India: Issues related to institutional arrangements. Public Works Management and Policy, 2000; 4: 319-330.
- Singhal S, Pandey S. Solid waste management in India: Status and future directions. TERI Information Monitor on Environmental Sciences, 2000; 6: 1-4.
- 6. Macwan JEM, Shukla J, Patel P, Shah B. Metropolitan domestic solid waste generation analysis in Indian context. J. Indian Association Environmental Management, 2003; 30: 158-161.
- Kasseva ME, Mbuligwe SE. Ramifications of solid waste disposal site relocation in urban areas of developing countries: A case study in Tanzania. Resources, Conservation and Recycling, 2000; 28: 147-161.
- Dijkgraaf E, Gradus RHJM. Cost savings in unitbased pricing of household waste: The case of The Netherlands. Resource and Energy Economics, 2004; 26: 353-371.
- Koushal RK, Varghese GK, Chabukdhara M. Municipal solid waste management in India-current state and future challenges: A review. International J. Engineering Science and Technology, 2013; 4:1473-1489.
- Huang Q, Wang Q, Dong L, Xi B, Zhou B. The current situation of solid waste management in China. J. Matter Cycles Waste Management, 2006; 8(1): 63-69.
- 11. Brigden K, Labunska I, Santillo D, Johnston P. Chemical contamination at e-waste recycling and disposal sites in Accra and Korforidua, Ghana. Greenpeace Toxic Tech, 2008; 10: 2008.
- 12. Ogwueleka TCh. Municipal solid waste characteristics and management in Nigeria. Iran J.

Environmental Health Science and Engineering, 2009; 6(3): 173-180.

- Zhang DQ, Tan SK, Gersberg RM. Municipal solid waste management in China: status, problems and challenges. J. Environmental Management, 2010; 91(8): 1-4.
- Gedefaw M. Assessing the current status of solid waste management of Gondar town, Ethiopia. Internat. J. Scientific and Technology Research, 2015; 4(9): 28-36.
- Shekdar AV, Krishnswamy KN, Tikekar VG, Bhide AD. Indian urban solid waste management systems – Jaded systems in need of resource agumentation. J. Waste management, 1992; 12(4): 379-387.
- 16. Bhide AD, Shekdar AV. Solid waste management in Indian urban centers. International Solid Waste Association Times, 1998; 1: 26-28.
- 17. Kansal A, Prasad RK, Gupta S. Delhi municipal solid waste and environment an appraisal. Indian J. Environmental Protection, 1998; 23(10): 123-128.
- Sharholy M, Ahmad K, Mahmood G, Trivedi RC. Municipal solid waste management in Indian cities – A review. Waste management, 2008; 28: 459-467.
- Singh SK, Sing RS. A study on municipal solid waste and its management practices in Dhanbad – Jharia coalfield. Indian J. Environmental Protection, 1998; 18(11): 850-852.
- Kansal A. Solid waste management strategies for India. Indian J. Environmental Protection, 2002; 22(4): 444-448.
- Malvia R, Choudhary R, Dharam B. Study on solid waste assessment and management in Indore city. IJEP, 2002; 22(8): 841-846.
- Renjini RL, Prakasam, VR. An evaluation of municipal solid waste management in Tripunithura municipality of Kerala. IJEP, 2005; 25(7): 652-656.
- 23. Rathi S. Alternative approaches for better municipal solid waste management in Mumbai, India. J. Waste Management, 2006; 26(10): 1192-1200.
- 24. Sharholy M, Ahmad K, Vaishya RC, Gupta RD. Municipal solid waste characteristics and management in Allahabad, India. Waste Management, 2007; 27: 480-496.
- 25. Pattnaik S, Reddy MV. Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation and Recycling, 2010; 54: 512-520.
- Shivashankara GP, Rekha HB. Solid waste management in suburban areas of Bangalore. Nature Environment and Pollution Technology, 2005; 4(4): 495-500.
- Gupta CKN, Shekar GL. Electronic waste management system in Bangalore – A review. Research India Publications, 2009; 1: 11-24.
- Chandra YI, Devi NL. Studies on municipal solid waste management in Mysore city-A case study. Report and Opinion, 2009; 1(3): 15-21.
- 29. Siddiqui J, Pandey G, Akhtar S. A case study of solid waste management in Mysore city. Internat J.

Application or Innovation in Engineering & Management, 20013; 2(11): 290-294.

- Chavan, ID, Patil DS. Zero waste management system: case study-Kumbarakoppal, Mysore. International J. Engineering Research and Technology, 2017; 6(5): 768-770.
- Megha TR, Basavarajappa S. Source of waste and its disposal practices at food supplying centers in Mysore city, Karnataka– A case study. World Journal of Advance Healthcare Research, 2018; 2(4): 268-280.
- 32. Sashikala K, Basavarajappa S. Hospital waste disposal practices at few health care centres in Mysore city, Karnataka, India – A case study. World Journal of Advance Healthcare Research, 2018; 2(5): 191-197.
- 33. Kamath US. Mysore District Gazetteer. Government of Karnataka, India, 2001; 1-100.
- 34. Anonymous. Ban of plastic waste at educational institutes. PTI, New Delhi. Prajavani, 2018; 20.05.
- Harish M. Solid waste in Mysore city A futuristic scenario. J. Pharmaceutical & Scence. Innovations, 2012; 1(1): 79-83.
- 36. Saha TK. Biostatistics in theory and practice. Emkay Publications, Delhi, 2009; 7-167.
- Sivaramanan S. E-waste management, disposal and its impacts on the environment. Universal J. Environmental Research and Technology, 2013; 3(5): 531-537.
- Ferrara I, Missios P. Recycling and waste diversion effectiveness: Evidence from Canada. Environmental and Resource Economics, 2005; 30: 221-238.
- 39. Wilfred KS, Moindi MN. Recycling of wastes as a strategy for environmental conservation in the lake Victoria Basin: The case of women groups in Kisumu, Kenya. African J. Environmental Science and technology, 2008; 2(10): 318-325.
- 40. Pappu A, Saxena M, Asolekar SR. Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 2007; 42: 2311-2320.
- 41. Singh GK, Gupta K, Chaudhary S. Solid waste management: Its sources, collection, transportation and recycling, 2014; 5(4): 347-351.
- 42. Troschinetz, A.M. and Mihelcic, J. R., Sustainable recycling of municipal solid waste in developing countries. Waste Management, 2009; 29: 915-923.
- 43. Harir AI, Kasim R, Ishiyaku B. Exploring resource recovery potentials of municipal solid waste: A review of solid wastes composting in Developing countries. International J. Scientific and Research Publications, 2015; 5(4): 1-8.
- Joshi R, Ahmed S. Status and challenges of municipal solid waste management in India: A review. Cogent Environmental Science, 2016; 2: 1139434: 1-18.
- 45. Pires A, Martinho G, Chang NB. Solid waste management in European countries: A review of

systems analysis techniques. J. Environmental Management, 2011; 92: 1033-1050.

- Idris A, Inane B, Hassan MN. Overview of waste disposal and landfills/dumps in Asian countries. Material Cycles and Waste Management, 2004; 16: 104-110.
- Kasseva ME, Gupta SK. Recycling An environmentally friendly and income generating activity towards sustainable solid waste management. Case study – Dar es Salaam City, Tanzania. Resources, Conservation and Recycling, 1996; 17: 299-309.
- Dhane AD, Sopan IT, Sanjay AB, Nilesh WD. Ecofriendly approach of urban solid waste management

 A case study of Jalgaon city, Maharashtra. J. Environmental Biologists, 2005; 26(40): 747-752.
- Sudhir V, Muraleedharan VR, Srinivasan G. Integrated solid waste management in Urban India: A critical operational research framework. Socio-Economic Planning Sciences, 1996; 30: 163-181.